・新しい再帰型畳み込みニューラルネットワークにより、脳内の神経細胞を自動的にマッピングできる。
・従来の自動化技術の10倍以上の精度を実現。
人間の脳には860億以上の神経細胞と、ほぼ同数のその他の細胞が存在します。脳の内部構造は複雑であるため、脳のマッピングは計算量が多く、面倒な作業です。
脳組織1立方ミリメートルを高解像度で詳細に画像化すると、1,000テラバイトを超えるデータが得られます。これは脳の機能をより深く理解するのに役立ちます。通常、このプロセスでは、電子顕微鏡を使ってナノメートルの解像度で脳組織を3次元的にイメージングし、それを検査して神経突起を追跡し、シナプスの各接続を検出します。
このプロセスを加速させるため、マックス・プランク神経生物学研究所(ドイツ)とグーグルの科学者たちは、これまでのニューラルネットワークよりも高い精度で、脳内の神経細胞を自動的にマッピングできるディープラーニング・モデルを構築しました。
従来のアルゴリズムでは、画像セグメンテーション(膨大な電子顕微鏡データから神経突起をトレースすること)のプロセスを2段階に分けていました:
1.機械学習分類器を用いて神経突起間の境界を見つける。
2.ウォーターシェッドのようなアルゴリズムを用いて、境界線で区切られていない画像ピクセルをグループ化する。
2015年、研究チームはこの2つの段階を組み合わせることができる再帰型畳み込みニューラルネットワーク(CNN)という代替手法に取り組み始めました。CNNは、特定の画素位置から開始し、どの画素が同じ構成要素に含まれるかを予測することで、繰り返し領域を埋めていきます。それ以来、研究チームはこのCNNを、高い精度を保ちながら大規模なデータセットに適用しようと試みてきました。
CNNの精度はどうやって測定されるのか?
研究チームは、(ランダムな点から出発して)神経細胞がエラーを起こすまでにどれだけの距離をトレースできるかを測定するために、「予想される実行距離」と呼ぶ新しい指標を開発しました。
この指標は、CNNがエラーを起こすまでの間隔を測るものです。これを、例えば、神経系の様々な部位における神経細胞の平均経路距離など、いくつかの生物学的パラメーターに関連付けることができます。
彼らは再帰型CNNを、直列ブロック面走査型電子顕微鏡を使って、キンカチョウという鳥の脳の画像化に応用しました。そして、100万立方ミクロン内の進捗を測定するために「予想される実行距離」を使用し、このアルゴリズムが従来のアプローチよりもはるかにうまく機能することを発見したのです。
研究チームは、鳥の脳のごく一部で各神経細胞を分割し、アルゴリズムによるエラーを手作業で修正しました。最終的には、神経結合を調べることができ、キンカチョウがどのように鳴き、その鳴き声を学習するかを解明することができました。【キンカチョウは新しい鳴き声を学習できる鳥のひとつであり、鳴き声学習研究の有力なモデル種となっている】
キンカチョウの脳の神経突起を3DでトレースするCNN
出典:Google
研究チームは、NVIDIA Tesla GPUとCUDAディープラーニングフレームワークで加速されたTensorFlowを使って、何千もの2D画像でCNNを学習させました。これらの画像を重ねると、3D画像が生成されます。
研究チームによると、わずか1ミリ角のサンプルにラベルを付けるには、およそ10万時間を要したということです。一方、CNNは学習し、7日間でタスクを完了しました。また、これまでの自動化技術よりも10倍も正確な結果が得られました。
次の目標は?
研究チームは、完全に自動化されたシナプス解像CNNを開発することを目標に、アルゴリズムの性能向上を継続する予定です。また、より大規模な研究コミュニティが同様の、より効率的な手法を構築するのに役立つよう、GitHubでコードを公開し、容積測定のデータセット用のWebGLベースのビューアも提供しています。